
Alternatives to Comprehensive
Least-Privilege

Karl MacMillan <kmacmillan@tresys.com>

© 2008 Tresys Technology

Background and Motivation

• All large SELinux policies are least-privilege
– Fine-grained types, attributes, object classes, and perms
– Minimal use of equivalence classes
– Tend to evolve towards more least-privilege over time

• Several reasons why:
– Offers excellent security
– Conceptually clear – requires less risk analysis

• Several drawbacks around size and complexity:
– Examining some security properties requires analysis
– Large policy customization require engineering
– Policy is sometimes brittle in the face of system change
– Disk and memory footprint large for some systems

Some Observations

• Reference policy has improved situation . . .
– But end of improvements from engineering may be near
– Fundamental simplifications are desirable

• Some applications are difficult to constrain
– Is it really possible to effectively constrain HAL, udev, etc.?

• Limiting how domains interact can be uninteresting
– Is the mechanism of IPC between domains important?
– Perhaps we just care about read / write between domains?

• Fine-grained types often just for later customization
– Work-around for 'type splitting' problem

• Users often request other security goals
– Example: just remove network access from user shells
– Implementation difficult because of policy size

Suggestion 1: Exploit Equivalence

• Current policy mirrors application / file structure
– Similar applications are given separate types
– Many policies are largely similar

• Collapse similar types
– Into a fewer, more generic types
– Examples: small trusted base, package managers, etc.

• Fewer types results in fewer interactions
– Reduces allow rules, interfaces, templates, etc.
– Simplified testing

• Potential problems:
– Hampers future customization - “type splitting problem”
– Care required to avoid overly broad equivalence

Suggestion 2: Reduce Objects / Perm

• Reduce the number of object classes and perms
– Remove unneeded granularity in object classes

• e.g., have a single IPC object class
– Make permissions more consistent across classes

• read, write, open, create, delete, append, execute
– May need to retain 'inline assembler' for raw access

• Rely more on types to differentiate access
• Potential drawbacks:

– Inconsistent objects / perms in kernel denials
– Tool changes (audit2allow) can help
– Policies for different use cases may diverge at object level

Other Suggestions

• Experiment with focus on other security goals
– E.g., application integrity, separation, confidentiality
– Allow broader access by default according to goals
– Ideally provide several alternatives for a single application

• Analyze security threats and policy effectiveness
– May lead to alternative approaches
– Enables balancing of complexity and security benefit

• Explore language features to ease customization
– Much policy complexity is to enable later customization
– Current policy aims to be all things to all users

• Often to work around language shortcomings
– Other talks today on this subject

Approach

• Emerging policy tools will allow experimentation
– Language features for easier customization
– Object / perm reduction can be done by policy tools
– Some tools exist today: e.g., CDSFramework

• New SELinux-enabled platforms offer opportunities
– Embedded devices in particular
– Appliances (virtual or real) offer narrowly focused goals
– Also OpenSolaris and Ubuntu

• Ideally successful experiments will be upstreamed
– Both userland tools and Reference Policy
– However, short term divergence is healthy

Questions / Discussion

Karl MacMillan <kmacmillan@tresys.com>

	VM Fortress DesktopTM
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Learn More about VM Fortress

