State of SELinux Labeled Networking

Paul Moore paul.moore@hp.com

SELinux Labeled Networking

- The past year
 - Peer label consolidation
 - Fallback peer labeling
 - -Traffic ingress/egress controls
 - Dynamic network access controls
- The next year (hopefully)
 - NetLabel address selectors
 - Loopback labeling that works

The Past Year (aka 2.6.25)

Peer Label Consolidation

- Consolidated NetLabel and Labeled IPsec access controls
 - Reconciliation of labels from both subsystems
 - Traffic is dropped when labels are not equivalent
 - Introduction of the peer object class
 - SELinux policy no longer needs to be subsystem specific
 - -Subsystems share a single access check
 - Less maintenance costs and per-packet overhead
- Backwards compatible with older SELinux policy
 - Utilizes network_peer_controls policy capability to conditionally enable access controls

Fallback Peer Labeling

- Peer labels without labeling protocol support
 - Labels assigned based on IP source address
 - Support for both networks and individual nodes
 - Assigns peer labels to conventional systems
 - Windows, Mac OS, ordinary Linux systems, etc.
- Utilizes the NetLabel framework
 - Fallback labels only assigned when peer label information is not present
 - CIPSO and Labeled IPsec override the fallback label
 - —Support provided in netlabel_tools version 0.18
 - RH/Fedora bugzilla #439833

Traffic Ingress/Egress Controls

- SELinux access controls for all network traffic
 - Access controls for local and forwarded traffic
 - Access controls for the network interface and address
 - Separate permissions for local and forwarded traffic
- Interface controls provide increased assurance
 - Peer labels on network traffic can be compared with the label of the physical interface
- Backwards compatible with older SELinux policy
 - Utilizes network_peer_controls policy capability to conditionally enable access controls

Dynamic Network Access Controls

- Enables access controls based on configuration
 - Access controls are only executed when labeled networking has been configured to label traffic
 - Reduces performance impact of network access controls on common configurations
- Requires current policy and configuration
 - -compat_net disabled
 - Migrate to iptables/secmark based labeling
 - -network_peer_controls policy capability
 - Currently disabled in SELinux Reference Policy

The Coming Year (aka 2.6.28?)

NetLabel Address Selectors

- Allow labeling based on the traffic destination
 - Apply NetLabel labeling based on domain and traffic's destination address
 - Supports both local and forwarded traffic
 - Works with existing domain based labeling
 - Different configuration type can be used for each domain
- Work in progress
 - Initial kernel development is almost complete
 - Kernel boots but new features are untested
 - —Changes to netlabel_tools required
 - Not started
 - -Targeting kernel 2.6.28

Loopback Labeling That Works

- Current solutions are problematic
 - NetLabel/CIPSO limited to MLS attributes
 - Labeled IPsec is difficult to get working and slow
- Extend CIPSO to support full SELinux contexts
 - -Transfer the SELinux kernel SID in a CIPSO tag
 - Non-standard but okay for loopback
- Work in progress
 - Depends on NetLabel address selector effort
 - Requires the ability to target specific localhost addresses
 - -Significant policy concerns when enabled
 - Can client_t talk to server_t?

More Information

- NetLabel Website
 http://netlabel.sourceforge.net
- SELinux Wiki http://selinuxproject.org

- My Email paul.moore@hp.com
- My Blog http://paulmoore.livejournal.com

