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Outline

• Policy DSL objectives
• Project architecture
• Shrimp: Reference policy with type kind 

checking
• Lobster: Higher order policy language
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Project objectives

• Shrimp:  Improve the 
reference policy language by 
moving into a formal setting
• Address issues such as

• Wrong number of parameters
• Duplicate macros
• Call to undefined macro

• Lobster: Provide 
abstractions that alleviate 
the tedium and detail of 
specifying a SELinux security 
policy

lobster
High level language and properties

shrimp
SELinux m4 plus types and properties

SELinux policy

SELinux native

Binary

m4+make+awk+sed+sort+python+ ...

checkpolicy / compile

parse / analyze

compile / pretty print

parse / analyze / compile
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Language trajectory
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Shrimp
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Purposes and possibilities of Shrimp

• Support for analysis of Reference Policy on its own 
level - not in terms of Native Policy.

• ``lint'' tool for Reference Policy.
• HTML generation of documentation + analysis 

results for Reference Policy.
• Prototyping workbench for a new Reference Policy 

language ``Shrimp''.
• Target for Lobster compilation.
• Conversion tool from Reference Policy to Shrimp 

(future)
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Shrimp anatomy

• kind information for interface parameters
• The kind system is actually a type system in 

programming language parlance - we attempt to 
avoid overloading the word type

• Local and global information-flow properties 
(future)
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A kind system for Shrimp

• Statement judgments for Reference Policy 
statements are of the form:  Γ | s :: R;O, which reads
•  “Given a symbol environment , statement s demands the the symbols R 

are provided by the policy, and puts the symbols in O into the policy”

• Example:  Γ | type t :: ∅;t : type
• “the statement `type t’ puts the type t into the policy”

• Composition of statements: The R and O demands 
enrich the symbol environment for later 
statements:

Γ |- s1 :: R1;O1    Γ |- s1 :: R1;O1  O1 and O2 disjoint
Γ |- s1;s2 :: R1 ∪ R2; O1 ∪ O2
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“Lint” results from kind analysis

Undefined identifiers: [{
../Reference-Policy/refpolicy/policy/modules/kernel/kernel.if:1014:32:proc_t,[type/attribute]}]
(100 errors like this.)
Mismatch between number of documented vs. referenced parameters:
## <param name="domain" />
## <param name="userdomain_prefix" />
## <param name="domain" />
[{\$1,[attribute_]}, {\$2,[type]}]
(29 errors like this.)
Wrong number of arguments: {
../Reference-Policy/refpolicy/policy/modules/apps/java.if:210:9:userdom_unpriv_usertype,
  [[attribute_], [type], [any]]}
(19 errors like this.)
Call to undefined macro: 
../Reference-Policy/refpolicy/policy/modules/system/userdomain.if:202:17:fs_read_nfs_named_sockets
(10 errors like this.)
Duplicate definition of macro:
../Reference-Policy/refpolicy/policy/support/obj_perm_sets.spt:334:9:all_nscd_perms
(5 errors like this.)
Illegal symbol declarations in interface: [
../Reference-Policy/refpolicy/policy/modules/kernel/selinux.if:514:14:\$1]
Duplicate definition of (
../Reference-Policy/refpolicy/policy/modules/kernel/corenetwork.te:1533:25:netif_lo_t,type)
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Kind inference results as HTML
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Lobster
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Security policy designer’s view

direction of arrows shows information flow

application

log

input

create

web_server

php_script

output

init

creator

mail_server

send

syslog
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Objects can be nested

provides one basis for abstraction in Lobster

obj1

port1

obj2

port2

obj3

port3a

port3b
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Lobster use case

• This is the intended use of the Lobster DSL
• A security policy designer writes a Lobster 

information flow diagram for the application
• A developer write a Lobster policy for the 

application
• An automatic tool verifies that the Lobster 

policy is a refinement of the Lobster information 
flow diagram, in that no extra information flows 
have been introduced

• A compiler takes the Lobster policy and 
generates SELinux policy statement
• In Shrimp
• In SELinux Native policy
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Lobster snippet

class F (path, level) {
  process = new "F" Process;
  port write : { type = X };
  port read  : { type = X };
  port executable  -- process.active;
  port create      -- process.transition;

  f = new "f" SimpleFile ( X, path );
  write  --> f.write;
  read   <-- f.read;
}
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Goal: Lobster bisque
and shrimp cocktail
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Next steps

• Incorporation of Shrimp into SLIDE tools
• Elevate Shrimp from lint to language
• Provide graphical front end for Lobster
• Add abstraction capabilities to Lobster 

informed by trials on real systems
• Work to reduce tedium and repetition

• Add high level policy constraints to Lobster
• e.g. “Process A can communicate to process C 

only via the intermediary B”

• Add trust annotations to objects, in 
support of overall system certification



© 2008 Galois, Inc.

End
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Backup slides
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The symbol environment

• The symbol environment Γ is local to macro 
definitions and implementation modules, 
and it is consulted in e.g. access-rule 
statements:
• If the symbol environment determines that s is a 

domain, t is a type or an attribute, c is a class 
and p is a permission, then we can say that the 
statement allow s t: c p is permissible, 
without any interaction with the policy 

Γ,s:domain,t:type,c:class,p:permission|-
allow s t:c p :: ∅;∅
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Reference policy source
#######################################
## <summary>
##	 Template for creating connections to
##	 a user DBUS.
## </summary>
## <param name="user_prefix">
##	 <summary>
##	 The prefix of the domain (e.g., user
##	 is the prefix for user_t).
##	 </summary>
## </param>
## <param name="domain_prefix">
##	 <summary>
##	 The prefix of the domain (e.g., user
##	 is the prefix for user_t).
##	 </summary>
## </param>
## <param name="domain">
##	 <summary>
##	 The type of the domain.
##	 </summary>
## </param>
#
template(`dbus_user_bus_client_template',`
	 gen_require(`
	 	 type $1_dbusd_t;
	 	 class dbus send_msg;
	 ')

#	 type $2_dbusd_$1_t;
#	 type_change $3 $1_dbusd_t:dbus $2_dbusd_$1_t;

	 # SE-DBus specific permissions
#	 allow $2_dbusd_$1_t { $1_dbusd_t self }:dbus send_msg;
	 allow $3 { $1_dbusd_t self }:dbus send_msg;

	 # For connecting to the bus
	 allow $3 $1_dbusd_t:unix_stream_socket connectto;
')
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Primitive classes

• For every SELinux class, there must be a 
Lobster class of the same name. The 
SELinux permissions are its ports

• These classes would be part of a Lobster 
version of the SELinux policy in force, 
allowing Lobster application policies to be 
checked in the right context.

  class File( regexp ) {
    port getattr : { type = x };
    port read    : { type = x };
  }
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Language hierarchy

Higher level

policy language
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Correspondence

manipulates controls

Middle level

policy language

Module

interface
Permission

Interface-ExpressionPermission-Expression

Correspondence

Lifted
Correspondence

manipulates controls

co
m

p
ile

d
e

riv
e

d
tra

n
s
la

tio
n

d
e

riv
e

d
im

p
le

m
e

n
ta

tio
n

Low level

policy language

actionPermission

action-ExpressionPermission-Expression
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