
© 2008 Galois, Inc.

Security Configuration Domain Specific
Language (DSL)
SELinux Developers Summit
Ottawa 2008

Peter White

© 2008 Galois, Inc.

Outline

• Policy DSL objectives
• Project architecture
• Shrimp: Reference policy with type kind

checking
• Lobster: Higher order policy language

© 2008 Galois, Inc.

Project objectives

• Shrimp: Improve the
reference policy language by
moving into a formal setting
• Address issues such as

• Wrong number of parameters
• Duplicate macros
• Call to undefined macro

• Lobster: Provide
abstractions that alleviate
the tedium and detail of
specifying a SELinux security
policy

lobster
High level language and properties

shrimp
SELinux m4 plus types and properties

SELinux policy

SELinux native

Binary

m4+make+awk+sed+sort+python+ ...

checkpolicy / compile

parse / analyze

compile / pretty print

parse / analyze / compile

co
m

pi
le

r

© 2008 Galois, Inc.

Language trajectory

Language Manipulates
Fancier

stuff
Semantics

Value
added

Native
Permissions

Files

Sets of
permissions,
roles, constraints

Relational
Much better
than writing

binary

Reference
Modules
interfaces

files
Macros

Native
Modules as
global vars

Modularity

Shrimp
Modules
interfaces

files

Macros
and kinds

Declarative
modules

Enforcement
of modularity

Lobster
Objects
classes

methods
TBD

Flow graph
Native
Shrimp

Abstraction

© 2008 Galois, Inc.

Shrimp

© 2008 Galois, Inc.

Purposes and possibilities of Shrimp

• Support for analysis of Reference Policy on its own
level - not in terms of Native Policy.

• ``lint'' tool for Reference Policy.
• HTML generation of documentation + analysis

results for Reference Policy.
• Prototyping workbench for a new Reference Policy

language ``Shrimp''.
• Target for Lobster compilation.
• Conversion tool from Reference Policy to Shrimp

(future)

© 2008 Galois, Inc.

Shrimp anatomy

• kind information for interface parameters
• The kind system is actually a type system in

programming language parlance - we attempt to
avoid overloading the word type

• Local and global information-flow properties
(future)

© 2008 Galois, Inc.

A kind system for Shrimp

• Statement judgments for Reference Policy
statements are of the form: Γ | s :: R;O, which reads
• “Given a symbol environment , statement s demands the the symbols R

are provided by the policy, and puts the symbols in O into the policy”

• Example: Γ | type t :: ∅;t : type
• “the statement `type t’ puts the type t into the policy”

• Composition of statements: The R and O demands
enrich the symbol environment for later
statements:

Γ |- s1 :: R1;O1 Γ |- s1 :: R1;O1 O1 and O2 disjoint
Γ |- s1;s2 :: R1 ∪ R2; O1 ∪ O2

© 2008 Galois, Inc.

“Lint” results from kind analysis

Undefined identifiers: [{
../Reference-Policy/refpolicy/policy/modules/kernel/kernel.if:1014:32:proc_t,[type/attribute]}]
(100 errors like this.)
Mismatch between number of documented vs. referenced parameters:
<param name="domain" />
<param name="userdomain_prefix" />
<param name="domain" />
[{\$1,[attribute_]}, {\$2,[type]}]
(29 errors like this.)
Wrong number of arguments: {
../Reference-Policy/refpolicy/policy/modules/apps/java.if:210:9:userdom_unpriv_usertype,
 [[attribute_], [type], [any]]}
(19 errors like this.)
Call to undefined macro:
../Reference-Policy/refpolicy/policy/modules/system/userdomain.if:202:17:fs_read_nfs_named_sockets
(10 errors like this.)
Duplicate definition of macro:
../Reference-Policy/refpolicy/policy/support/obj_perm_sets.spt:334:9:all_nscd_perms
(5 errors like this.)
Illegal symbol declarations in interface: [
../Reference-Policy/refpolicy/policy/modules/kernel/selinux.if:514:14:\$1]
Duplicate definition of (
../Reference-Policy/refpolicy/policy/modules/kernel/corenetwork.te:1533:25:netif_lo_t,type)

© 2008 Galois, Inc.

Kind inference results as HTML

© 2008 Galois, Inc.

Lobster

© 2008 Galois, Inc.

Security policy designer’s view

direction of arrows shows information flow

application

log

input

create

web_server

php_script

output

init

creator

mail_server

send

syslog

log

© 2008 Galois, Inc.

Objects can be nested

provides one basis for abstraction in Lobster

obj1

port1

obj2

port2

obj3

port3a

port3b

© 2008 Galois, Inc.

Lobster use case

• This is the intended use of the Lobster DSL
• A security policy designer writes a Lobster

information flow diagram for the application
• A developer write a Lobster policy for the

application
• An automatic tool verifies that the Lobster

policy is a refinement of the Lobster information
flow diagram, in that no extra information flows
have been introduced

• A compiler takes the Lobster policy and
generates SELinux policy statement
• In Shrimp
• In SELinux Native policy

© 2008 Galois, Inc.

Lobster snippet

class F (path, level) {
 process = new "F" Process;
 port write : { type = X };
 port read : { type = X };
 port executable -- process.active;
 port create -- process.transition;

 f = new "f" SimpleFile (X, path);
 write --> f.write;
 read <-- f.read;
}

© 2008 Galois, Inc.

Goal: Lobster bisque
and shrimp cocktail

© 2008 Galois, Inc.

Next steps

• Incorporation of Shrimp into SLIDE tools
• Elevate Shrimp from lint to language
• Provide graphical front end for Lobster
• Add abstraction capabilities to Lobster

informed by trials on real systems
• Work to reduce tedium and repetition

• Add high level policy constraints to Lobster
• e.g. “Process A can communicate to process C

only via the intermediary B”

• Add trust annotations to objects, in
support of overall system certification

© 2008 Galois, Inc.

End

© 2008 Galois, Inc.

Backup slides

© 2008 Galois, Inc.

The symbol environment

• The symbol environment Γ is local to macro
definitions and implementation modules,
and it is consulted in e.g. access-rule
statements:
• If the symbol environment determines that s is a

domain, t is a type or an attribute, c is a class
and p is a permission, then we can say that the
statement allow s t: c p is permissible,
without any interaction with the policy

Γ,s:domain,t:type,c:class,p:permission|-
allow s t:c p :: ∅;∅

© 2008 Galois, Inc.

Reference policy source
#######################################
<summary>
##	 Template for creating connections to
##	 a user DBUS.
</summary>
<param name="user_prefix">
##	 <summary>
##	 The prefix of the domain (e.g., user
##	 is the prefix for user_t).
##	 </summary>
</param>
<param name="domain_prefix">
##	 <summary>
##	 The prefix of the domain (e.g., user
##	 is the prefix for user_t).
##	 </summary>
</param>
<param name="domain">
##	 <summary>
##	 The type of the domain.
##	 </summary>
</param>
#
template(`dbus_user_bus_client_template',`
	 gen_require(`
	 	 type $1_dbusd_t;
	 	 class dbus send_msg;
	 ')

#	 type $2_dbusd_$1_t;
#	 type_change $3 $1_dbusd_t:dbus $2_dbusd_$1_t;

	 # SE-DBus specific permissions
#	 allow $2_dbusd_$1_t { $1_dbusd_t self }:dbus send_msg;
	 allow $3 { $1_dbusd_t self }:dbus send_msg;

	 # For connecting to the bus
	 allow $3 $1_dbusd_t:unix_stream_socket connectto;
')

© 2008 Galois, Inc.

Primitive classes

• For every SELinux class, there must be a
Lobster class of the same name. The
SELinux permissions are its ports

• These classes would be part of a Lobster
version of the SELinux policy in force,
allowing Lobster application policies to be
checked in the right context.

 class File(regexp) {
 port getattr : { type = x };
 port read : { type = x };
 }

© 2008 Galois, Inc.

Language hierarchy

Higher level

policy language

MethodPermission

Action-ExpressionPermission-Expression

Correspondence

Lifted
Correspondence

manipulates controls

Middle level

policy language

Module

interface
Permission

Interface-ExpressionPermission-Expression

Correspondence

Lifted
Correspondence

manipulates controls

co
m

p
ile

d
e

riv
e

d
tra

n
s
la

tio
n

d
e

riv
e

d
im

p
le

m
e

n
ta

tio
n

Low level

policy language

actionPermission

action-ExpressionPermission-Expression

Correspondence

Lifted
Correspondence

manipulates controls

d
e

ri
v
e

d

tr
a

n
s
la

ti
o

n

d
e

ri
v
e

d
im

p
le

m
e

n
ta

ti
o

n

co
m

p
ile

im
p
le

m
e
n
ta

tio
n

im
p
le

m
e
n
ta

tio
n

