
1

An Improved SELinux 
Policy Infrastructure 

James Carter
jwcart2@tycho.nsa.gov

National Security Agency
National Information Assurance Research Laboratory 

(NIARL)



2

Outline

● Goals
● Current Architecture
● New Policy Build and Management Architecture
● Common Intermediate Language (CIL)
● Plan



3

Goals

● Short-term
– Enhanced higher-level language support
– More scalable and usable policy infrastructure
– Better support for customizing the policy

● Long-term
– Higher-level policy languages
– Less complex policies



4

Current Architecture

Policy Store
(Refpolicy Modules)

Kernel Binary Policy

Local Modifications

File Contexts &
Other Managed Files

Module Linker

Context Files &
Other Unmanaged Files

Other Tools

Management Layer

Refpolicy Build & Install

Refpolicy Source



5

Policy Build and Management 
Architecture



6

Problems with the 
Management Layer

● Removing permissions requires the modification of 
policy modules

● Custom policy distribution is hard
● Not clear where to store local module sources
● Binary module format is a hindrance to extensibility
● Mixture of managed and unmanaged policy in the policy 

store
● Build process is brittle
● Multiple policy file formats exist
● No common abstraction that can contain any policy 

statement



7

Requirements of the 
Management Layer

● Must have the ability to add and remove policy 
rules

● Must be able to import/export customizations
● Must keep the distribution policy and local 

customizations separate
● Should store local customizations in the policy 

store
● Should use a source policy format



8

Requirements of the 
Management Layer (cont)

● Should not mix managed and unmanaged policy 
files

● Should keep the policy build as simple, flexible, 
and resource friendly as possible

● May eliminate some policy file formats



9

Proposed Architecture

High­level language 
(HLL) Compiler

High­level Policy

Kernel Binary Policy

Local Modifications

Context Files &
Other Unmanaged Files

File Contexts &
Other Managed Files

Other Tools

High­level language
(HLL) Compiler

High­level Policy

Kernel Policy Backend

Policy Store
(CIL)

Management Layer

CIL Compiler



10

Changes to the 
Management Layer

● Will be able to retrieve the source for a module 
semanage module --get <module>

● Every command will create a log entry
– New global option --message
– Format:

COM=”<command+options>” /
ID=<login id> CONTEXT=<context> / 
TIME=<time stamp> MSG=”<message>”

● Priority Levels 
– Management -> Local -> Distribution

(Higher to Lower)



11

Changes to the 
Management Layer

● Source Control Management
– basic

● Does not support reverting back more than one version.
– git



12

Policy Build and Load 
Sequence

● Build CIL tree by traversing the policy store from 
highest to lowest priority

● Execute CIL transforms on the tree
● Remove disabled modules from the tree
● Convert CIL tree to policydb and managed files
● Serialize the policy to disk in a temporary 

location



13

Policy Build and Load 
Sequence (cont)

● Sanity check the policy files
● Copy the policy files to the destination in the 

policy store
● Load policy



14

Common Intermediate Language 
(CIL)



15

Problems with the 
Modular Policy Language

● Lack of abstraction
– Not a good target for high-level languages
– Modules are inflexible
– Not easy to create new types based on an old type

● Gaps in features
● Confusing semantics
● Inconsistencies in the syntax
● Inadequate debugging support
● Ordering dependencies for portcon, category, sid, 

and class



16

Requirements of the 
Language

● Support the use of high-level languages
● Provide a comprehensive and unambiguous 

representation of the policy
● Support programmatic introspection and manipulation of 

the policy
● Provide detailed debugging information
● Be order independent
● Support policy modification without changing the 

original sources
● Support policy access control



17

New Features

● Transformation Language
● Selection
● Generic blocks
● Generic ifs
● Defined sets



18

Transformation Language

● Provides the ability to do policy manipulation at a 
semantic level.

● Three basic operations
– add <target>
– del <target>
– copy <source> => <target>

except <items from source>

● Example
add BLOCK foo {

TYPE bar
}



19

Selection

● Syntax
/ Absolute path
./ Relative path
.. Parent
* Match zero or more of anything
0-9 Ranged matching on number
<path>/ Child of <path> - Only valid in a target

● Example
– To select all allow rules with a target of bar:

/*/(ALLOW:TYPE * (TYPE bar) *)



20

Other Features

● Generic Block
– Replaces interfaces and templates
– Used for selection

● Generic if
– Replaces tunables, booleans, optionals, and ifdefs

● Defined Sets
– Ability to define sets now built in



21

Plan

● Send the new architecture and CIL to the 
SELinux mailing list for discussion

● Modify libraries to support the new architecture
● Modify SELinux tools to support the new 

architecture
● Develop the CIL compiler
● Modify Reference policy build to target CIL


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

