
Integrity-checked block
devices with device mapper

Mandeep Baines
Will Drewry

Huh?

We'll talk about our efficient device mapper target that provides
read-only access to blocks from another block device that are
cryptographically hashed and checked against a known good

"manifest" prior to use.

Why?

● General examples:
○ /boot or / is unmodified since last boot

■ Boot off a usb key
■ Xen hypervisor root and Intel's tboot

○ Downloaded fs image is right (gpg sig over a hash)
○ USB stick is unmodified

● Chrome OS case:
○ all mountpoints are W^X
○ Root partition needs to be integrity assured
○ kernel & its parameters are signed (verified boot flow)
○ <2 second boot budget with Atom processors
○ minimize untrusted data parsing during boot

Existing options (circa 2009)

● linux-ima
○ was per-file, full code hashing prior to exec
○ tpm-rooted guarantees were slow

● fuse implementation
○ same idea, but slow(er)

● custom initramfs/initrd for checking the root filesystem
○ (assuming a signed, checked kernel)
○ slow boot. at least linear with check code/config size

● ditto, but checking only specific files
○ filesystem parsing attacks and complexity were concerns

Introducing dm-verity

● We needed something
○ ... fast
○ ... we could configure from the kernel commandline*
○ ... we could boot directly to
○ ... with cryptographic assurances
○ ... with minimal attack surface

● Enter device-mapper
○ Can intercept every block request to our root partition
○ Benefits from caching layers
○ Minimizes copying

● Now, how can we speed it up?

Hash trees (or are they tries ...)

● Hash trees (Merkle trees) are well-known.
● Provide a tree of hashes where the leaf nodes are the real

data.
● Minimal data is needed to verify data with a hash tree:

○ the "root node" hash
○ how to configure the tree:

■ data source, block size, tree depth, ...
● Configuring a device mapper target only really needs a

○ data source
● Fiddly but gets us a 1.6 second boot on an Atom processor,

SSD and ~700 megabyte root filesystem.

● Enter the hash tries.

Hash tries

● Hash tries, or prefix (hash) tree, or ...
● Provide a standard mechanisms for indexing and organizing

the tree
● Tree depth and number of nodes per leaf stop being options
● Use a "block id" to determine the path from root to leaf
● Allows short-circuiting neighboring verifications

● Now we're at ~1.2s boot time on the same hardware but
with ~800 megabyte root filesystem. Yeah!

Other architectural points

● Lock-free
○ Tree nodes use an atomic_t enum for state that can only

progress: UNALLOCATED ... VERIFIED
○ Allows for parallelizing the workload

● Parallel processing
○ one workqueue per cpu
○ one crypto context per cpu

● Error (hash mismatch) behavior is configurable:
○ only return EIO, panic, or ...
○ use a registered handler via the notifier subsystem

● Salting
○ A long-lived block may keep the same hash for a while
○ Add a configurable salt and rotate on-demand

Where does that leave us?

● 1.2s boot with a 891 megabyte root filesystem
● Assuming no I/O bottlenecks, the same system would take

9 seconds to pre-verify the whole filesystem with SHA1
● Platform and "user" configurable error handling
● "dd" bandwidth of 25.5 MB/s (on a Samsung Chromebook)

○ Cached ~ 377 MB/s

● We could still do better.

Moar speed

● Copying SHA1 from git into the kernel:
○ Saves another 300 milliseconds

● Any suggestions?

Example dm table

Setup /dev/sda3 with an integrity-checking overlay with the
pregenerated hash tree appended after the verified data:

"0 1740800 verity payload=/dev/sda3 hashtree=/dev/sda3 hashstart=1740800
alg=sha1 root_hexdigest=716277..."

Boot-time integration

● Chrome OS
○ Speed matters to us
○ Added do_mount_dm.c (no initramfs+klibc)

■ (sent but not pulled; will resend)
■ Just like md="" we added dm=""

○ The root node hash ends up in dm=""
○ Chrome OS firmware/bootloader checks the signature

over our kernel and kernel parameters.
● Chromium OS

○ Intel's tboot could be used to get a verified root block
device in the same fashion

○ Or just a USB stick you carry in your pocket :)

Questions? Comments?

