
Embedded Linux Integrity
David Safford

6/30/2013

Abstract

Linux is in widespread use in embedded devices,
but these devices typically lack critical security
features found in higher-end Linux systems. They
typically do not have any way to validate their
firmware, they do not have hardware roots of
trust for trusted or secure boot, they do not have
provisions for physical presence, to protect
firmware from remote modification, and they do
not have secure update. Vendors claim that these
features are either too large, or too expensive to
fit in their embedded devices.

This paper summarizes the recent widespread
vulnerabilities and compromises of embedded
devices, and shows how the given security
features would defeat such attacks. It relates the
concepts to the NIST SP800 guidelines for BIOS
measurement and protection, and to the ongoing
work on Linux secure boot for higher end
devices. It looks at four typical embedded
devices, shows how all of these features can be
added at zero cost.

Introduction

Linux runs on an incredible range of devices
from very small embedded devices, to the largest
supercomputers. The devices cover a staggering
12 orders of magnitude in memory size, and 7
orders of magnitude in cost.

Embedded Linux devices typically consist of just
three small chips – an SoC, flash, and RAM. The
SoC (System on a Chip) normally includes a 32

bit ARM or MIPS CPU, along with flash, RAM,
USB, ethernet and wireless interfaces. The flash
is typically a 4 or 8MB SPI device, and the RAM
is usually 32 – 64 MB. The firmware on these
small devices includes a Linux kernel, stripped
and compressed to under 1MB, and a squashed
root filesystem under 3 MB. There is no
initramfs.

For this class of embedded devices we are mainly
interested in four foundational integrity features:

• initial firmware validation
• run-time firmware protection
• firmware update validation
• boot time integrity validation

While higher-end Linux devices in the mobile,
PC, and server categories have one or more of
these features, typical embedded devices have
none of them. Table 1 shows some categories of
Linux devices, and their typical integrity features.

Category Cost Size Typical Integrity
Features

Server $10K+ PB 4768 Crypto card
Trusted and Secure
Boot

PC $1K TB TPM Trusted and
Secure Boot (Win8)

mobile $500 GB Restricted Boot

embedded $50 MB Nothing

Sensor $10 KB Nothing

 Table 1: Linux Spectrum

This material is based on research sponsored by the Department of Homeland Security (DHS) Science and
Technology Directorate, Homeland Security Advanced Research Projects Agency, Cyber Security Division
(DHS S&T/HSARPA/CSD), BAA 11-02 and Air Force Research Laboratory, Information Directorate under
agreement number FA8750-12-2-0243. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Department of Homeland
Security, Air Force Research Laboratory or the U.S. Government.

For this paper, we selected four example
embedded linux devices as representative:
Linksys WRT54G, TP-Link MR3020, D-Link
DIR-505, and the Pogoplug model 2.

The WRT54g was the first wireless access point
to run embedded Linux. Linksys published all the
GPL source code to this device, and today
virtually all wireless devices use a derivative of
this original embedded Linux. Openwrt is a
community supported derivative that runs on
most past and current wireless devices.

The TP-link and D-link are small, travel-sized
versions with significant additional features,
including support for USB attached network
storage and media serving. Figure 1 shows
images for these four selected devices.

Embedded Linux devices like these four have
been extensively compromised recently. In 2012
4.5 Million home routers were compromised in
Brazil [1]. In this one attack, many different
Broadcom based devices, from multiple vendors
and across four ISPs were compromised,
redirecting all home client devices to malicious
DNS servers. While the vulnerability was
present only on the internal networks, the basic
exploit was so simple that using CSRF (cross site
request forgery) to “bounce” the attack off local

browsers was quite effective. The basic (trivial)
exploit to get a plaintext copy of the admin
password was:

 get.pl http://192.168.1.1/password.cgi

In 2013, the D-Link DIR-645 home router was
similarly found to give away the admin password
in a trivial exploit [2]:

 curl -d SERVICES=DEVICE.ACCOUNT
 http://<device ip>/getcfg.php

In 2013, five new vulnerabilities in Linksys
routers were discovered[3]. The WRT54GL (one
of the devices selected), was found to have a
CSRF vulnerability allowing unauthenticated
upload of arbitrary firmware. The EA2700 was
found to have a CSRF file path traversal
vulnerability which can expose all files
(including /etc/passwd):

POST /apply.cgi
submit_button=Wireless_Basic&change_acti
on=gozila_cgi&next_page=/etc/passwd

It also had an interesting CSRF vulnerability
returning the source code of any page. (This is
one of the few known single character exploits, as
adding trailing / is all that is needed.) For
example:

http://192.168.1.1/Management.asp/

In 2013 researchers hacked over a dozen home
routers [4] with two remote (CSRF) root
exploits on the Belkin N300, and Belkin N900,
and four local (WLAN) root exploits on the same
Belkin devices, plus the Netgear WNDR4700.

The one-line root exploits were (N300):

<form name="belkinN300"
action="http://192.168.2.1/apply.cgi"
method="post"/>

N900 exploit:

<form name="belkinN900"
action="http://192.168.2.1/util_system.h
tml"

Figure 1: Example Devices

http://192.168.1.1/Management.asp/

With so many of these devices vulnerable to such
simple exploits, their integrity is at significant
risk. While all of these vulnerabilities are in the
web management interfaces of the devices,
integrity measurement and protection
mechanisms at the device level can detect and
prevent successful exploits of all of these
vulnerabilities.

Threat Model and Integrity Goals

The threat model we consider includes supply
chain attacks, and remote software attack. Can
the attacker compromise the integrity of the
device's firmware – either before purchase, or
over the internet once it is installed? We are not
concerned with local physical attack, as this does
not scale, and is quite difficult to protect against.
In fact, physical presence will explicitly be
trusted as part of the proposed defenses.

So what integrity features are possible and
appropriate for embedded devices? One starting
point is to look at the NIST guidelines for BIOS
Integrity Measurement and Protection. While
these guidelines were intended for PC and server
class machines, they are a good starting point.
Currently there are two specific guidelines: NIST-
SP800-155-December-2011 BIOS Integrity
Measurement (Draft) [5], and NIST-SP800-147-
April-2011 BIOS Integrity Protection [6].

The first presents guidelines for “trusted boot” -
the incorporation of a hardware chip as a root of
trust for measuring and attesting to the integrity
of the BIOS itself, and of subsequent software as
it is booted and executed. Note that this
guideline does not discuss “secure boot”, the
much more common hardware root of trust which
validates signatures on software before booting.

The second guideline addresses integrity
protection for the BIOS - the requirements that
BIOS integrity should be protected from remote
software attack, that any updates need to be either
authenticated, or done in some physically
protected local manner, and that the mechanisms
for protection must not be by-passable.

From these guidelines we can derive four related
integrity features desirable in the embedded
device category. For this class of embedded
devices we are mainly interested in four
foundational integrity features (the NIST
guideline terminology is in parenthesis):

• initial firmware validation
(“BIOS measurement”)

• run-time firmware protection
(“BIOS protection”)

• firmware update validation
(“Secure/local updates”)

• boot time integrity verification
(“Secure boot”);

Table 2 shows the four sample embedded
devices, and that most of these requirements are
not met.

Device Measure
BIOS?

Lock
BIOS?

Secure-
local
updates?

Secure
Boot?

Pogoplug Yes -
SATA

No No No

D-Link
DIR-505

No No No No

TP-Link
MR3020

No No No No

Linksys
WRT54G

Yes -
JTAG

No No No

Table 2: Initial Integrity Features

The first exception was that the WRT54GL does
have a JTAG interface through which a user can
read (and write) the firmware in the flash chip.
Normally JTAG interfaces and corresponding
software are quite expensive and complex, but
the WRT community has articles showing how to
do this with free software and roughly $10 for a
parallel port connecting cable.

The second exception is that the pogoplug is
based on a SoC with the built-in ROM code to
boot from a SATA disk drive, and articles show

how to boot firmware inspection tools securely
from a trusted SATA disk image.

What can be done to cover all of the desired
functions in all of the example devices? One
problem is that vendors say that these features are
simply too large (they won't fit in flash/RAM), or
are too expensive (adding a $0.75 TPM chip is
simply not feasible). So in the remainder of this
paper we show how all of the features can be
added at zero cost and no additional storage
space.

Initial Firmware Validation

How do we verify that a BIOS is authentic? We
can't just ask it while it is running, because it will
lie if it is malicious. We already mentioned the
two methods used by the Pogoplug and the
WRT54: JTAG and trusted immutable boot
ROM.

Another method similar to JTAG is to use the
flash's SPI (Serial Peripheral Interface) to read
the contents directly. Most embedded Linux
devices use SPI flash for the firmware, and the D-
Link and TP-Link devices both do. The SPI bus
was designed to be sharable if it is properly
buffered, and many PC motherboards feature
buffered SPI interfaces for their BIOS for ease of
modification (and the subsequent un-bricking).

Unfortunately the D-link and TP-Link do not
properly buffer the SPI bus between the SoC and
the flash, so any attempt to attach a hardware
reader to the bus results in contention, and neither
the SoC nor the reader function correctly. So at
first this appeared to be an unworkable solution.

While there are many other theoretical ways to
read the flash contents, such as real-time passive
monitoring and reconstruction of the SPI data, or
even power or RF monitoring, these methods are
quite complex and expensive to implement. The
only other known way to validate the flash's
contents is to unsolder the flash chip from the
mother board, so it can be read by the SPI reader
without interference. Having actually done this,

we concluded this was not an acceptable method
for routine validation.

Going back to the SPI bus reading method, we
looked for the simplest, low cost way that an
owner (or even better, the vendor) could properly
buffer the SPI bus. Both the D-Link and TP-Link
devices are based on the same Atheros SoC, so
any solution would work on both devices. Our
preferred method for reading/programming SPI
flash devices is the Buspirate [9] shown in figure
2, combined with the open source flashrom
software application [10].

Figure 2: Buspirate SPI programmer

The buspirate is a $30 device with a USB
interface for power and control from a PC
running flashrom. It in turn has a 10 pin header
with power supply outputs for optionally
powering the chip, and input/output pins for
reading/writing. While there are cheaper parallel
port cables for SPI programming, bit-banging the
SPI lines through a parallel port is much slower
than using the buspirate, which has circuits for
generating the needed serial clock and data
signals directly.

Using the buspirate and flashrom, we
experimentally determined that the SPI bus could
be sufficiently buffered for in circuit
programming with just three additional resistors
as shown schematically in Figure 3. Figure 4
shows the buspirate connected to the MR-3020
while reading the flash contents, and figure 5
shows a more detailed view of the (crudely)
added buffering resistors. The D-Link and TP-
Link circuit boards already have a large number
of resistors; adding three more would cost less

than 1 cent in quantity, so we think this qualifies
as a zero cost modification (and is much more
convenient than chip unsoldering).

Atheros SPI Flash Bus
 Pirate

-----1Kohm-----CS (pin 1)-----CS
-----1Kohm-----CLK (pin 6)-----CLK
----200ohm-----SI (pin 5)-----MOSI
---------------SO (pin 2)-----MISO
---------------V+ (pin 8)-----3.3v
---------------GND (pin 4)-----GND
---------------!WP (pin 3)
---------------!hold (pin 7)

Figure 3: SPI buffering Schematic

Figure 4: SPI in-circuit-programming

Run-time Firmware Protection and Firmware
Update Protection

The second main integrity goal is to protect the
integrity of the firmware from remote software
attack. While this could easily be done by
permanently wiring the flash's !WP pin low, this
would prevent valid firmware updates and re-

configurations. So the closely related third goal
is to ensure that updates to the firmware are
allowed, but validated or locally authorized in
some way that is not by-passable by remote
software attack.

The flash chips in all four of the sample
embedded devices have a Hardware Protection
Mode (HPM) which can block all writes to all or
selected parts of the flash based on a combination
of forcing the !WP pin low, and then setting a
control register bit appropriately. The HPM
control bit is non-volatile, and survives power
cycles, so the only way to exit HPM mode is to
force !WP high, and then reset the HPM control
bit.

HPM leads to a very simple method for providing
both flash locking, and secure local update. If
the !WP pin on the flash is normally held low,
with a physical momentary push button that can
force the pin high, then the firmware bootstrap
(u-boot [12]) can simply set the HPM mode bit,
disabling all writes to the chip, locking the chip
against any updates, including remote software
attacks. Then, if an update or reconfiguration is
desired, unlocking HPM mode can be done only
if someone presses the button, establishing
physical presence, for a secure local update.

The MR-3020 uses a Spansion S25FL032A [11]
flash chip. This chip has HPM support, with the
addition of 4 control register bits, which can
select a subset of the chip's address space to
protect. Table 3 shows the MR-3020's memory
layout. For this prototype, the entire chip was
locked, requiring physical presence for any
update or configuration of the device, but by
using the control bits, a subset could be protected
to trade-off security and convenience.

The MR-3020 also has a convenient “WPS”
momentary push button, normally used to begin
Wireless Protected Setup for establishing a secure
connection with a new client. This button has a
default high output, which is forced low while the
button is pushed, which is perfect for controlling
the !WP pin. The button can be used for both
functions, as the software context can understand

which function is being requested, although the
normal WPS function should be disabled anyway,
due to its security weaknesses.

Figures 5 and 6 show the MR-3020 with both the
one wire !WP modification, along with the three
resistors for SPI buffering. These are the only
hardware modifications needed for this device.

Part. Name Size Contents

mtd0 “boot” 64KB u-boot

mtd1 “kernel” 1024KB Linux Kernel

mtd2 “rootfs” 2816KB Linux root filesystem

mtd3 “config” 64KB config data

mtd4 “ART” 64KB radio config data

Table 3: MR-3020 Flash Layout

U-boot was modified to demonstrate/test the
HPM with physical presence control. At boot
time, u-boot attempts to lock the chip, in case it
was unlocked before, and then attempts to unlock
it. If the WPS button is pressed, then the unlock
will succeed, and updates can be applied. If the
WPS button is not pressed, then the unlock will
fail, and updates will not be possible. In either
case, before booting the Linux kernel, u-boot will
re-lock the flash.

Figure 5: modified MR-3020 Bottom View

Figure 6: modified MR-3020 Top View

The following u-boot console log shows
debugging output with the button pressed and not
pressed. A status register value of 2 is unlocked,
and 9c or 9e is locked:

Write_protect: starting SR = 2
Write_protect: ending SR = 9c
Write_unprotect: starting SR = 9e
Write_unprotect: ending SR = 9e
Write_unprotect failed.
…
Write_protect: starting SR = 2
Write_protect: ending SR = 9c
Write_unprotect: starting SR = 9e
Write_unprotect: ending SR = 2
Write_unprotect succeeded.

Integrity Protection on DIR-505

The DIR-505 has a similar WPS momentary push
button for !WP control. It also has an interesting
sliding switch for controlling the operating mode
of the device, to choose between Router,
Repeater, or Hotspot modes. This sliding switch
actually is a four position switch, with the fourth
position unused. The fourth position can be
accessed simply by trimming the plastic slide a
bit, so that the fourth position can be reached, and
used to force the !WP pin high to allow

updates/reconfigurations. Figure 7 shows the
modified DIR-505 slide switch.

Figure 7: modified DIR-505

Boot-time Integrity Verification

The fourth integrity goal is to validate the
firmware at boot time (“secure boot”). Assuming
that the u-boot partition is locked with HPM as
discussed, then it can be a trusted root to validate
the linux kernel before loading and booting it. If
the kernel is signed with a private key, and the
corresponding public key is stored in the
protected u-boot partition, then u-boot can do the
validation, and the key can be changed only with
physical presence.

This secure boot, with physical presence
controlled key management was implemented on
the MR-3020. The MR-3020 was chosen as it
provided the greatest challenge. With the smallest
flash chip (4MB), its entire u-boot partition is
only 64K bytes, and the existing u-boot code used
54K, leaving just 10K bytes to implement all of
the needed functions (HPM flash locking with
physical presence control, RSA signature
validation, and public key storage and
management.

The RSA signature verification code was derived
from the PolarSSL library [13] by stripping out
everything not needed. The kernel signature was
created with standard openssl commands, and the
resultant binary signature simply appended to the
end of the kernel. The (single) validating public
key was stored in binary form at the end of the u-
boot partition. The combined flash locking and
signature verification code added roughly 8K
bytes to u-boot, increasing its total size to 62K,
which with the public key still fits within the 64K
partition.

The following u-boot console debugging output
shows hex formatted output of the sha1 hash of
the kernel, the public key modulus, the binary
PKCS1.5 signature, and the results of the
verification.

Booting image at 9f020000 ...
kernel sha1
E9321D87C091F971C8D955C399EBA53807429A61
modulus:
9292758453063D803DD603D5E777D7888ED1D5BF
35786190FA2F23EBC0848AEA
DDA92CA6C3D80B32C4D109BE0F36D6AE7130B9CE
D7ACDF54CFC7555AC14EEBAB
93A89813FBF3C4F8066D2D800F7C38A81AE31942
917403FF4946B0A83D3D3E05
EE57C6F5F5606FB5D4BC6CD34EE0801A5E94BB77
B07507233A0BC7BAC8F90F79
signature:
2CB0F653FF3BBCFF2E31ACC0840F02A84975B716
7291BB36EEE3F74D02EB3B6A
ACADE02CBCF6E2326230C296E4D8A8D70F309479
B388A99591AD5C41938280E3
F51EA9865ED8A0360A0F5BD6A6C676C363B43E54
61D9CCF00D46E1B5449CB262
BDE36CAD4AFBEE51ED731BBF48340F290DF8DD84
4791D81259CEDF99CD1CA2E6
rsa verify kernel succeeded
 Uncompressing Kernel Image ... OK

Summary

Table 4 shows the final results of these
modifications on the D-Link and TP-Link
devices, and similar modifications on the
Pogoplug and Linksys devices. With essentially
zero cost hardware and software modifications
we can meet all four integrity goals on all four
example devices. With firmware measurement,
we can detect supply chain or other firmware

modification. With HPM locking, we can protect
the firmware from remote modification, even if
the remote attacker gets the root password as in
all of the earlier described web management
vulnerabilities. As physical presence is needed to
unlock the flash, we provide secure local update.
If the kernel partition is not locked for
convenience, secure boot can provide strong
validation, with secure local update of the
validating public key.

Device Measure
BIOS?

Lock
BIOS?

Signed-
local
updates?

Secure
Boot?

Pogoplug Yes -
SATA

Yes Yes Yes

D-Link
DIR-505

Yes
Buspirate

Yes Yes Yes

TP-Link
MR3020

Yes
Buspirate

Yes Yes Yes

Linksys
WRT54G

Yes -
JTAG

Yes Yes Yes

Table 4: Integrity features after modification.

References

[1] Fabio Assolini, “The tale of one thousand and
one DSL modems”, Securelist, 2012,
https://www.securelist.com/en/blog/20819
3852/The_tale_of_one_thousand_and_one_DS
L_modems

[2] roberto@greyhats.it, Bugtraq Mailing List
27 February 2013
http://archives.neohapsis.com/archives/b
ugtraq/2013-02/0151.html

[3] Phil Purviance, “Don't Use Linksys Routers”,
March 2013
https://superevr.com/blog/2013/dont-use-
linksys-routers/

[4] ISE, “Exploiting SOHO Routers”, April 2013
http://securityevaluators.com//content/
case-studies/routers/
soho_router_hacks.jsp

[5] NIST, BIOS Integrity Measurement

Guidelines (Draft) SP 800-155, December 2011
http://csrc.nist.gov/publications/drafts
/800-155/draft-SP800-155_Dec2011.pdf

[6] NIST, BIOS Protection Guidelines
NIST-SP800-147, April 2011
http://csrc.nist.gov/publications/nistpu
bs/800-147/NIST-SP800-147-April2011.pdf

[7] Trusted Computing Group, “Trusted Boot”
http://www.trustedcomputinggroup.org/res
ources/trusted_boot/

[8] UEFI, Secure boot
UEFI specification 2.3.1, section 1.8.1
http://www.uefi.org/specs/download/2_3_1
_D.zip

[9] Buspirate
http://dangerousprototypes.com/docs/Bus_
Pirate

[10] Flashrom
http://flashrom.org

[11] Spansion, S25FL032A reference manual
http://www.spansion.com/Support/Datashee
ts/S25FL032A_00.pdf

[12] u-boot
http://www.denx.de/wiki/U-Boot/WebHome

[13] Polar SSL library
https://polarssl.org/

http://flashrom.org/
http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate
http://securityevaluators.com//content/case-studies/routers/soho_router_hacks.jsp
http://securityevaluators.com//content/case-studies/routers/soho_router_hacks.jsp
http://securityevaluators.com//content/case-studies/routers/soho_router_hacks.jsp
http://securityevaluators.com//content/case-studies/routers/soho_router_hacks.jsp
http://securityevaluators.com//content/case-studies/routers/soho_router_hacks.jsp
https://superevr.com/blog/2013/dont-use-linksys-routers/
https://superevr.com/blog/2013/dont-use-linksys-routers/
http://archives.neohapsis.com/archives/bugtraq/2013-02/0151.html
http://archives.neohapsis.com/archives/bugtraq/2013-02/0151.html
https://www.securelist.com/en/blog/208193852/
https://www.securelist.com/en/blog/208193852/

