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Abstract

Linux is in widespread use in embedded devices,
but these devices typically lack critical security
features found in higher-end Linux systems. They
typically do not have any way to validate their
firmware,  they  do  not  have  hardware  roots  of
trust for trusted or secure boot, they do not have
provisions  for  physical  presence,  to  protect
firmware from remote modification, and they do
not have secure update. Vendors claim that these
features are either too large, or too expensive to
fit in their embedded devices. 

This  paper  summarizes  the  recent  widespread
vulnerabilities  and  compromises  of  embedded
devices,  and  shows  how  the  given  security
features would defeat such attacks. It relates the
concepts to the NIST SP800 guidelines for BIOS
measurement and protection, and to the ongoing
work  on  Linux  secure  boot  for  higher  end
devices.  It  looks  at  four  typical  embedded
devices, shows how all of these features can be
added at zero cost. 

Introduction

Linux  runs  on  an  incredible  range  of  devices
from very small embedded devices, to the largest
supercomputers.  The devices cover a staggering
12 orders  of  magnitude in  memory size,  and 7
orders of magnitude in cost. 

Embedded Linux devices typically consist of just
three small chips – an SoC, flash, and RAM. The
SoC (System on a Chip) normally includes a 32

bit ARM or MIPS CPU, along with flash, RAM,
USB, ethernet and wireless interfaces. The flash
is typically a 4 or 8MB SPI device, and the RAM
is usually 32 – 64 MB. The firmware on these
small  devices  includes  a  Linux kernel,  stripped
and compressed to under 1MB, and a squashed
root  filesystem  under  3  MB.  There  is  no
initramfs.

For this class of embedded devices we are mainly
interested in four foundational integrity features:

• initial firmware validation
• run-time firmware protection
• firmware update validation
• boot time integrity validation

While  higher-end  Linux  devices  in  the  mobile,
PC, and server categories  have one or  more of
these  features,  typical  embedded  devices  have
none of them. Table 1 shows some categories of
Linux devices, and their typical integrity features.

Category Cost Size Typical Integrity 
Features

Server $10K+ PB 4768 Crypto card 
Trusted and Secure 
Boot

PC $1K TB TPM Trusted and 
Secure Boot (Win8)

mobile $500 GB Restricted Boot

embedded $50 MB Nothing

Sensor $10 KB Nothing

    Table 1: Linux Spectrum
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For  this  paper,  we  selected  four  example
embedded  linux  devices  as  representative:
Linksys  WRT54G,  TP-Link  MR3020,  D-Link
DIR-505, and the Pogoplug model 2. 

The WRT54g was the first wireless access point
to run embedded Linux. Linksys published all the
GPL  source  code  to  this  device,  and  today
virtually all wireless devices use a derivative of
this  original  embedded  Linux.  Openwrt  is  a
community  supported  derivative  that  runs  on
most past and current wireless devices.

The  TP-link  and  D-link  are  small,  travel-sized
versions  with  significant  additional  features,
including  support  for  USB  attached  network
storage  and  media  serving.   Figure  1  shows
images for these four selected devices.

Embedded  Linux  devices  like  these  four  have
been extensively compromised recently. In 2012
4.5 Million home routers  were compromised in
Brazil  [1].  In  this  one  attack,  many  different
Broadcom based devices, from multiple vendors
and  across  four  ISPs  were  compromised,
redirecting all  home client devices to malicious
DNS  servers.   While  the  vulnerability  was
present only on the internal networks, the basic
exploit was so simple that using CSRF (cross site
request forgery) to “bounce” the attack off local

browsers was quite effective. The basic (trivial)
exploit  to  get  a  plaintext  copy  of  the  admin
password was:

    get.pl http://192.168.1.1/password.cgi

In 2013, the D-Link DIR-645 home router  was
similarly found to give away the admin password
in a trivial exploit [2]:

    curl -d SERVICES=DEVICE.ACCOUNT
     http://<device ip>/getcfg.php

In  2013,  five  new  vulnerabilities  in  Linksys
routers were discovered[3]. The WRT54GL (one
of  the  devices  selected),  was  found  to  have  a
CSRF  vulnerability  allowing  unauthenticated
upload of arbitrary firmware.  The EA2700 was
found  to  have  a  CSRF  file  path  traversal
vulnerability  which  can  expose  all  files
(including /etc/passwd):

POST /apply.cgi
submit_button=Wireless_Basic&change_acti
on=gozila_cgi&next_page=/etc/passwd

It  also  had  an  interesting  CSRF  vulnerability
returning the source code of any page.  (This is
one of the few known single character exploits, as
adding trailing / is all that is needed.) For 
example:

http://192.168.1.1/Management.asp/

In 2013 researchers hacked over a  dozen home
routers  [4]   with  two  remote  (CSRF)   root
exploits  on the Belkin N300, and Belkin N900,
and four local (WLAN) root exploits on the same
Belkin devices, plus the Netgear WNDR4700.

The one-line root exploits were (N300):

<form name="belkinN300" 
action="http://192.168.2.1/apply.cgi" 
method="post"/>

N900 exploit:

<form name="belkinN900" 
action="http://192.168.2.1/util_system.h
tml"

Figure 1: Example Devices

http://192.168.1.1/Management.asp/


With so many of these devices vulnerable to such
simple  exploits,  their  integrity  is  at  significant
risk. While all of these vulnerabilities are in the
web  management  interfaces  of  the  devices,
integrity  measurement  and  protection
mechanisms  at  the  device  level  can  detect  and
prevent  successful  exploits  of  all  of  these
vulnerabilities.

Threat Model and Integrity Goals

The  threat  model  we  consider  includes  supply
chain  attacks,  and  remote  software  attack.  Can
the  attacker  compromise  the  integrity  of  the
device's  firmware  –  either  before  purchase,  or
over the internet once it is installed? We are not
concerned with local physical attack, as this does
not scale, and is quite difficult to protect against.
In  fact,  physical  presence  will  explicitly  be
trusted as part of the proposed defenses.

So  what  integrity  features  are  possible  and
appropriate for embedded devices? One starting
point is to look at the NIST guidelines for BIOS
Integrity  Measurement  and  Protection.  While
these guidelines were intended for PC and server
class  machines,  they are  a  good starting  point.
Currently there are two specific guidelines: NIST-
SP800-155-December-2011  BIOS  Integrity
Measurement (Draft) [5], and  NIST-SP800-147-
April-2011 BIOS Integrity Protection [6].

The first presents guidelines for “trusted boot” -
the incorporation of a hardware chip as a root of
trust for measuring and attesting to the integrity
of the BIOS itself, and of subsequent software as
it  is  booted  and  executed.   Note  that  this
guideline  does  not  discuss  “secure  boot”,  the
much more common hardware root of trust which
validates signatures on software before booting. 

The  second  guideline  addresses  integrity
protection for the BIOS - the requirements that
BIOS integrity should be protected from remote
software attack, that any updates need to be either
authenticated,  or  done  in  some  physically
protected local manner, and that the mechanisms
for protection must not be by-passable.

From these guidelines we can derive four related
integrity  features  desirable  in  the  embedded
device  category.  For  this  class  of  embedded
devices  we  are  mainly  interested  in  four
foundational  integrity  features  (the  NIST
guideline terminology is in parenthesis):

• initial firmware validation
(“BIOS measurement”)

• run-time firmware protection
(“BIOS protection”)

• firmware update validation
(“Secure/local updates”)

• boot time integrity verification
(“Secure boot”);

Table  2  shows  the  four  sample  embedded
devices, and that most of these requirements are
not met.

Device Measure
BIOS?

Lock 
BIOS?

Secure-
local 
updates?

Secure 
Boot?

Pogoplug Yes - 
SATA

No No No

D-Link
DIR-505

No No No No

TP-Link
MR3020

No No No No

Linksys
WRT54G

Yes - 
JTAG

No No No

Table 2: Initial Integrity Features

The first exception was that the WRT54GL does
have a JTAG interface through which a user can
read (and write) the firmware in the flash chip.
Normally  JTAG  interfaces  and  corresponding
software  are  quite  expensive  and  complex,  but
the WRT community has articles showing how to
do this with free software and roughly $10 for a
parallel port connecting cable.

The  second  exception  is  that  the  pogoplug  is
based on a SoC with the built-in ROM code to
boot from a SATA disk drive, and articles show



how to  boot  firmware  inspection tools  securely
from a trusted SATA disk image.

What  can  be  done  to  cover  all  of  the  desired
functions  in  all  of  the  example  devices?  One
problem is that vendors say that these features are
simply too large (they won't fit in flash/RAM), or
are too expensive (adding a $0.75 TPM chip is
simply not feasible). So in the remainder of this
paper  we show how all  of  the  features  can  be
added  at  zero  cost  and  no  additional  storage
space.

Initial Firmware Validation

How do we verify that a BIOS is authentic? We
can't just ask it while it is running, because it will
lie if it is malicious.  We already mentioned the
two  methods  used  by  the  Pogoplug  and  the
WRT54:  JTAG  and  trusted  immutable  boot
ROM. 

Another  method  similar  to  JTAG is  to  use  the
flash's  SPI  (Serial  Peripheral  Interface)  to  read
the  contents  directly.  Most  embedded  Linux
devices use SPI flash for the firmware, and the D-
Link and TP-Link devices both do.  The SPI bus
was  designed  to  be  sharable  if  it  is  properly
buffered,  and  many  PC  motherboards  feature
buffered SPI interfaces for their BIOS for ease of
modification (and the subsequent un-bricking).

Unfortunately  the  D-link  and  TP-Link  do  not
properly buffer the SPI bus between the SoC and
the  flash,  so  any attempt  to  attach  a  hardware
reader to the bus results in contention, and neither
the SoC nor the reader function correctly. So at
first this appeared to be an unworkable solution.

While  there are many other theoretical  ways to
read the flash contents, such as real-time passive
monitoring and reconstruction of the SPI data, or
even power or RF monitoring, these methods are
quite complex and expensive to implement. The
only  other  known  way  to  validate  the  flash's
contents  is  to  unsolder  the  flash  chip  from the
mother board, so it can be read by the SPI reader
without interference.  Having actually done this,
 

we concluded this was not an acceptable method
for routine validation.

Going back to the SPI bus reading method, we
looked  for  the  simplest,  low  cost  way  that  an
owner (or even better, the vendor) could properly
buffer the SPI bus.  Both the D-Link and TP-Link
devices are based on the same Atheros SoC, so
any solution  would  work  on both  devices.  Our
preferred  method  for  reading/programming  SPI
flash devices is the Buspirate [9] shown in figure
2,  combined  with  the  open  source  flashrom
software application [10].

Figure 2: Buspirate SPI programmer

The  buspirate  is  a  $30  device  with  a  USB
interface  for  power  and  control  from  a  PC
running flashrom. It in turn has a 10 pin header
with  power  supply  outputs  for  optionally
powering  the  chip,  and  input/output  pins  for
reading/writing. While there are cheaper parallel
port cables for SPI programming, bit-banging the
SPI lines through a parallel port is much slower
than using the buspirate,  which has circuits  for
generating  the  needed  serial  clock  and  data
signals directly.

Using  the  buspirate  and  flashrom,  we
experimentally determined that the SPI bus could
be  sufficiently  buffered  for  in  circuit
programming with just three additional resistors
as  shown  schematically  in  Figure  3.  Figure  4
shows the buspirate  connected  to  the MR-3020
while  reading  the  flash  contents,  and  figure  5
shows  a  more  detailed  view  of  the  (crudely)
added  buffering  resistors.  The  D-Link  and  TP-
Link circuit boards already have a large number
of  resistors;  adding three  more would  cost  less



than 1 cent in quantity, so we think this qualifies
as a  zero cost  modification (and is  much more
convenient than chip unsoldering).

Atheros        SPI Flash         Bus    
                                 Pirate

-----1Kohm-----CS    (pin 1)-----CS
-----1Kohm-----CLK   (pin 6)-----CLK
----200ohm-----SI    (pin 5)-----MOSI
---------------SO    (pin 2)-----MISO
---------------V+    (pin 8)-----3.3v
---------------GND   (pin 4)-----GND
---------------!WP   (pin 3)
---------------!hold (pin 7)

Figure 3: SPI buffering Schematic

Figure 4: SPI in-circuit-programming

Run-time Firmware Protection and Firmware 
Update Protection

The second main integrity goal is to protect the
integrity  of  the  firmware  from remote  software
attack.  While  this  could  easily  be  done  by
permanently wiring the flash's !WP pin low, this
would  prevent  valid  firmware  updates  and  re-

configurations.  So the closely related third goal
is  to  ensure  that  updates  to  the  firmware  are
allowed,  but  validated  or  locally  authorized  in
some  way  that  is  not  by-passable  by  remote
software attack.

The  flash  chips  in  all  four  of  the  sample
embedded  devices  have  a  Hardware  Protection
Mode (HPM) which can block all writes to all or
selected parts of the flash based on a combination
of  forcing the  !WP pin  low,  and then  setting  a
control  register  bit  appropriately.  The  HPM
control  bit  is  non-volatile,  and  survives  power
cycles, so the only way to exit HPM mode is to
force !WP high, and then reset the HPM control
bit. 

HPM leads to a very simple method for providing
both  flash  locking,  and  secure  local  update.  If
the !WP pin on the flash is  normally held low,
with a physical momentary push button that can
force the pin high,  then the firmware bootstrap
(u-boot [12]) can simply set the HPM mode bit,
disabling all writes to the chip, locking the chip
against  any updates,  including  remote  software
attacks. Then, if an update or reconfiguration is
desired, unlocking HPM mode can be done only
if  someone  presses  the  button,  establishing
physical presence, for a secure local update.

The MR-3020 uses a Spansion S25FL032A [11]
flash chip. This chip has HPM support, with the
addition  of  4  control  register  bits,  which  can
select  a  subset  of  the  chip's  address  space  to
protect.  Table  3  shows the  MR-3020's  memory
layout.  For  this  prototype,  the  entire  chip  was
locked,  requiring  physical  presence  for  any
update  or  configuration  of  the  device,  but  by
using the control bits, a subset could be protected
to trade-off security and convenience. 

The  MR-3020  also  has  a   convenient  “WPS”
momentary push button, normally used to begin
Wireless Protected Setup for establishing a secure
connection with a new client. This button has a
default high output, which is forced low while the
button is pushed, which is perfect for controlling
the  !WP pin.  The  button  can  be  used  for  both
functions, as the software context can understand



which function is being requested,  although the
normal WPS function should be disabled anyway,
due to its security weaknesses.

Figures 5 and 6 show the MR-3020 with both the
one wire !WP modification, along with the three
resistors  for  SPI  buffering.  These  are  the  only
hardware modifications needed for this device.

Part. Name Size Contents

mtd0 “boot” 64KB u-boot

mtd1 “kernel” 1024KB Linux Kernel

mtd2 “rootfs” 2816KB Linux root filesystem

mtd3 “config” 64KB config data

mtd4 “ART” 64KB radio config data

Table 3: MR-3020 Flash Layout

U-boot  was  modified  to  demonstrate/test  the
HPM  with  physical  presence  control.  At  boot
time, u-boot attempts to lock the chip, in case it
was unlocked before, and then attempts to unlock
it. If the WPS button is pressed, then the unlock
will succeed, and updates can be applied. If the
WPS button is not pressed, then the unlock will
fail,  and updates  will  not  be possible.  In either
case, before booting the Linux kernel, u-boot will
re-lock the flash.

Figure 5: modified MR-3020 Bottom View

Figure 6: modified MR-3020 Top View

The  following  u-boot  console  log  shows
debugging output with the button pressed and not
pressed. A status register value of 2 is unlocked,
and 9c or 9e is locked:

Write_protect: starting SR = 2
Write_protect: ending SR = 9c
Write_unprotect: starting SR = 9e
Write_unprotect: ending SR = 9e
Write_unprotect failed.
…
Write_protect: starting SR = 2
Write_protect: ending SR = 9c
Write_unprotect: starting SR = 9e
Write_unprotect: ending SR = 2
Write_unprotect succeeded.

Integrity Protection on DIR-505

The DIR-505 has a similar WPS momentary push
button for !WP control. It also has an interesting
sliding switch for controlling the operating mode
of  the  device,  to  choose  between  Router,
Repeater, or Hotspot modes. This sliding switch
actually is a four position switch, with the fourth
position  unused.  The  fourth  position  can  be
accessed simply by trimming the plastic slide a
bit, so that the fourth position can be reached, and
used  to  force  the  !WP  pin  high  to  allow



updates/reconfigurations.   Figure  7  shows  the
modified DIR-505 slide switch.

Figure 7: modified DIR-505

Boot-time Integrity Verification

The  fourth  integrity  goal  is  to  validate  the
firmware at boot time (“secure boot”).  Assuming
that the u-boot partition is locked with HPM as
discussed, then it can be a trusted root to validate
the linux kernel before loading and booting it. If
the kernel is signed with a private key, and the
corresponding  public  key  is  stored  in  the
protected u-boot partition, then u-boot can do the
validation, and the key can be changed only with
physical presence.

This  secure  boot,  with  physical  presence
controlled key management was implemented on
the  MR-3020.  The  MR-3020  was  chosen  as  it
provided the greatest challenge. With the smallest
flash  chip  (4MB),  its  entire  u-boot  partition  is
only 64K bytes, and the existing u-boot code used
54K, leaving just 10K bytes to implement all of
the  needed  functions  (HPM  flash  locking  with
physical  presence  control,  RSA  signature
validation,  and  public  key  storage  and
management.

The RSA signature verification code was derived
from the PolarSSL library [13] by stripping out
everything not needed. The kernel signature was
created with standard openssl commands, and the
resultant binary signature simply appended to the
end of the kernel. The (single) validating public
key was stored in binary form at the end of the u-
boot  partition.  The combined flash locking and
signature  verification  code  added  roughly  8K
bytes to u-boot, increasing its total size to 62K,
which with the public key still fits within the 64K
partition.

The following u-boot console debugging output
shows hex formatted output of the sha1 hash of
the  kernel,  the  public  key  modulus,  the  binary
PKCS1.5   signature,  and  the  results  of  the
verification.

## Booting image at 9f020000 ...
kernel sha1 
E9321D87C091F971C8D955C399EBA53807429A61
modulus:
9292758453063D803DD603D5E777D7888ED1D5BF
35786190FA2F23EBC0848AEA
DDA92CA6C3D80B32C4D109BE0F36D6AE7130B9CE
D7ACDF54CFC7555AC14EEBAB
93A89813FBF3C4F8066D2D800F7C38A81AE31942
917403FF4946B0A83D3D3E05
EE57C6F5F5606FB5D4BC6CD34EE0801A5E94BB77
B07507233A0BC7BAC8F90F79
signature:
2CB0F653FF3BBCFF2E31ACC0840F02A84975B716
7291BB36EEE3F74D02EB3B6A
ACADE02CBCF6E2326230C296E4D8A8D70F309479
B388A99591AD5C41938280E3
F51EA9865ED8A0360A0F5BD6A6C676C363B43E54
61D9CCF00D46E1B5449CB262
BDE36CAD4AFBEE51ED731BBF48340F290DF8DD84
4791D81259CEDF99CD1CA2E6
rsa verify kernel succeeded
   Uncompressing Kernel Image ... OK

Summary

Table  4  shows  the  final  results  of  these
modifications  on  the  D-Link  and  TP-Link
devices,  and  similar  modifications  on  the
Pogoplug and Linksys  devices.  With essentially
zero  cost  hardware  and  software  modifications
we can meet all four integrity goals on all four
example  devices.  With  firmware  measurement,
we  can  detect  supply  chain  or  other  firmware



modification. With HPM locking, we can protect
the firmware from remote modification,  even if
the remote attacker gets the root password as in
all  of  the  earlier  described  web  management
vulnerabilities.  As physical presence is needed to
unlock the flash, we provide secure local update.
If  the  kernel  partition  is  not  locked  for
convenience,  secure  boot  can  provide  strong
validation,  with  secure  local  update  of  the
validating public key.

Device Measure 
BIOS?

Lock 
BIOS?

Signed-
local 
updates?

Secure
Boot?

Pogoplug Yes - 
SATA

Yes Yes Yes

D-Link
DIR-505

Yes 
Buspirate

Yes Yes Yes

TP-Link
MR3020

Yes 
Buspirate

Yes Yes Yes

Linksys
WRT54G

Yes - 
JTAG

Yes Yes Yes

Table 4: Integrity features after modification.
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